lamindb.models.Registry¶
- class lamindb.models.Registry(name, bases, attrs, **kwargs)¶
Bases:
ModelBaseMetaclass for
SQLRecord.Each
Registryobject is aSQLRecordclass and corresponds to a table in the metadata SQL database.You work with
Registryobjects whenever you use class methods ofSQLRecord.You call any subclass of
SQLRecorda “registry” and their objects “records”. ASQLRecordobject corresponds to a row in the SQL table.If you want to create a new registry, you sub-class
SQLRecord.Example:
from lamindb import SQLRecord, fields # sub-classing `SQLRecord` creates a new registry class Experiment(SQLRecord): name: str = fields.CharField() # instantiating `Experiment` creates a record `experiment` experiment = Experiment(name="my experiment") # you can save the record to the database experiment.save() # `Experiment` refers to the registry, which you can query df = Experiment.filter(name__startswith="my ").to_dataframe()
Note:
Registryinherits from Django’sModelBase.Methods¶
- lookup(field=None, return_field=None, keep='first')¶
Return an auto-complete object for a field.
- Parameters:
field (
str|DeferredAttribute|None, default:None) – The field to look up the values for. Defaults to first string field.return_field (
str|DeferredAttribute|None, default:None) – The field to return. IfNone, returns the whole record.keep (
Literal['first','last',False], default:'first') – When multiple records are found for a lookup, how to return the records. -"first": return the first record. -"last": return the last record. -False: return all records.
- Return type:
NamedTuple- Returns:
A
NamedTupleof lookup information of the field values with a dictionary converter.
See also
Examples
>>> import bionty as bt >>> bt.settings.organism = "human" >>> bt.Gene.from_source(symbol="ADGB-DT").save() >>> lookup = bt.Gene.lookup() >>> lookup.adgb_dt >>> lookup_dict = lookup.dict() >>> lookup_dict['ADGB-DT'] >>> lookup_by_ensembl_id = bt.Gene.lookup(field="ensembl_gene_id") >>> genes.ensg00000002745 >>> lookup_return_symbols = bt.Gene.lookup(field="ensembl_gene_id", return_field="symbol")
- filter(*queries, **expressions)¶
Query records.
- Parameters:
queries – One or multiple
Qobjects.expressions – Fields and values passed as Django query expressions.
- Return type:
QuerySet- Returns:
A
QuerySet.
See also
Guide: Query & search registries
Django documentation: Queries
Examples
>>> ln.ULabel(name="my label").save() >>> ln.ULabel.filter(name__startswith="my").to_dataframe()
- get(idlike=None, **expressions)¶
Get a single record.
- Parameters:
idlike (
int|str|None, default:None) – Either a uid stub, uid or an integer id.expressions – Fields and values passed as Django query expressions.
- Raises:
docs:lamindb.errors.DoesNotExist – In case no matching record is found.
- Return type:
TypeVar(T, bound= SQLRecord)
See also
Guide: Query & search registries
Django documentation: Queries
Examples
ulabel = ln.ULabel.get("FvtpPJLJ") ulabel = ln.ULabel.get(name="my-label")
- to_dataframe(include=None, features=False, limit=100)¶
Convert to
pd.DataFrame.By default, shows all direct fields, except
updated_at.Use arguments
includeorfeatureto include other data.- Parameters:
include (
str|list[str] |None, default:None) – Related fields to include as columns. Takes strings of form"ulabels__name","cell_types__name", etc. or a list of such strings.features (
bool|list[str] |str, default:False) – If a list of feature names, filtersFeaturedown to these features. IfTrue, prints all features with dtypes in the core schema module. If"queryset", infers the features used within the set of artifacts or records. Only available forArtifactandRecord.limit (
int, default:100) – Maximum number of rows to display from a Pandas DataFrame. Defaults to 100 to reduce database load.
- Return type:
DataFrame
Examples
Include the name of the creator in the
DataFrame:>>> ln.ULabel.to_dataframe(include="created_by__name"])
Include display of features for
Artifact:>>> df = ln.Artifact.to_dataframe(features=True) >>> ln.view(df) # visualize with type annotations
Only include select features:
>>> df = ln.Artifact.to_dataframe(features=["cell_type_by_expert", "cell_type_by_model"])
- search(string, *, field=None, limit=20, case_sensitive=False)¶
Search.
- Parameters:
string (
str) – The input string to match against the field ontology values.field (
str|DeferredAttribute|None, default:None) – The field or fields to search. Search all string fields by default.limit (
int|None, default:20) – Maximum amount of top results to return.case_sensitive (
bool, default:False) – Whether the match is case sensitive.
- Return type:
QuerySet- Returns:
A sorted
DataFrameof search results with a score in columnscore. Ifreturn_querysetisTrue.QuerySet.
Examples
>>> ulabels = ln.ULabel.from_values(["ULabel1", "ULabel2", "ULabel3"], field="name") >>> ln.save(ulabels) >>> ln.ULabel.search("ULabel2")
- using(instance)¶
Use a non-default LaminDB instance.
- Parameters:
instance (
str|None) – An instance identifier of form “account_handle/instance_name”.- Return type:
QuerySet
Examples
>>> ln.ULabel.using("account_handle/instance_name").search("ULabel7", field="name") uid score name ULabel7 g7Hk9b2v 100.0 ULabel5 t4Jm6s0q 75.0 ULabel6 r2Xw8p1z 75.0
- add_to_class(name, value)¶